Supersymmetry and Homotopy 1 the Algebraic Data of a Physical System
نویسنده
چکیده
The homotopical information hidden in a supersymmetric structure is revealed by considering deformations of a configuration manifold. This is in sharp contrast to the usual standpoints such as Connes’ programme where a geometrical structure is rigidly fixed. For instance, we can relate supersymmetries of types N = 2n and N = (n, n) in spite of their gap due to distinction between Z2(even-odd)and integer-gradings. Our approach goes beyond the theory of real homotopy due to Quillen, Sullivan and Tanré developed, respectively, in the 60’s, 70’s and 80’s, which exhibits real homotopy of a 1-connected space out of its de Rham-Fock complex with supersymmetry. Our main new step is based upon the Taylor (super-)expansion and locality, which links differential geometry with homotopy without the restriction of 1-connectedness. While the homotopy invariants treated so far in relation with supersymmetry are those depending only on Z2-grading like the index, here we can detect new N-graded homotopy invariants. While our setup adopted here is (graded) commutative, it can be extended also to the non-commutative cases in use of state germs (Haag-Ojima) corresponding to a Taylor expansion. 1 The Algebraic Data of a Physical System The purpose of this section is to fix notation and our general viewpoint. For simplicity, let us start with a classical system on a finite-dimensional affine space V with its coordinate space V . In reference to a chosen probability
منابع مشابه
ON THE CAPACITY OF EILENBERG-MACLANE AND MOORE SPACES
K. Borsuk in 1979, at the Topological Conference in Moscow, introduced concept of the capacity of a compactum and asked some questions concerning properties of the capacity ofcompacta. In this paper, we give partial positive answers to three of these questions in some cases. In fact, by describing spaces homotopy dominated by Moore and Eilenberg-MacLane spaces, the capacities of a Moore space $...
متن کاملSome traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کاملA Modified Energy Balance Method to Obtain Higher-order Approximations to the Oscillators with Cubic and Harmonic Restoring Force
This article analyzes a strongly nonlinear oscillator with cubic and harmonic restoring force and proposes an efficient analytical technique based on the modified energy balance method (MEBM). The proposed method incorporates higher-order approximations. After applying the proposed MEBM, a set of complicated higher-order nonlinear algebraic equations are obtained. Higher-order nonlinear algebra...
متن کاملOn the convergence of the homotopy analysis method to solve the system of partial differential equations
One of the efficient and powerful schemes to solve linear and nonlinear equations is homotopy analysis method (HAM). In this work, we obtain the approximate solution of a system of partial differential equations (PDEs) by means of HAM. For this purpose, we develop the concept of HAM for a system of PDEs as a matrix form. Then, we prove the convergence theorem and apply the proposed method to fi...
متن کاملSolving a System of Linear Equations by Homotopy Analysis Method
In this paper, an efficient algorithm for solving a system of linear equations based on the homotopy analysis method is presented. The proposed method is compared with the classical Jacobi iterative method, and the convergence analysis is discussed. Finally, two numerical examples are presented to show the effectiveness of the proposed method.
متن کامل